
These days, collecting information about anything and everything present in the public domain and

using to find patterns that could prove crucial for various real world applications. In our use cases

we had to iterate over not few, but aggregate information from tens of thousands of websites.

Introduction

Following are the factors to be be considered while scraping from websites.

The factors

 Redirects 301 and 302: Following redirects manually through code is painful.

 Security Certificates: Certificates validation and authorisation is difficult when done through a

raw HTTP call

 Dynamic Renders: There are lots of websites which render its pages through javascript. These

may not be available in the first HTTP call that is made.

 Meta Redirects: Not just the classical redirects, the latest HTML5 specs allows or tells

browsers to redirect based on Meta tags.

 IFrames: Hitting a page through backend does not render or fetch the IFrames that the page

has.

 Forms: Following forms and submitting them becomes easier when using a real browser.

1

Concurrent Scraping at Scale: A

Case Study

Exploring Serverless

Considering the number of websites we had to scrape and the amount of time it would take to do

that,
unless we make them concurrent, it would become a near never-ending saga. So we need a vast

‘pure’
horizontally scalable infrastructure. In order to achieve such an architecture, we had to make

sure we don’t have any component in the architecture that cannot scale horizontally.

To solve the time-consumption and infrastructure issues, we did a thorough study on going with a

Serverless architecture, and to emulate a real browser, we used selenium-webdriver with

chrome-extension. Lambda or the serverless engines offer good returns when we need to run things

highly in parallel for tasks that could be counted in 100s of milliseconds. However, in our case,

Chrome has to perform a cold start every time

Pure Horizontal scalability

DDos defenders: The Website defenders like Cloudflare, incapsula, Reblaze etc make it

almost impossible to crawl sites through raw HTTP calls.

7.

8.

9.

10.

Identification of Links: Links that are buried deep inside scripts cannot be found which

means that deeper crawling will become impossible.

Efficiency: Since we need to crawl thousands of sites, the amount of time it would

consume would really be huge. Time literally means cost here.

Infrastructure: We really need a large set of powerful machines in order to scrape and store

the data in the scale of millions.

2

Still, this was something we can live with because hitting every page via a browser solves a lot of

problems like redirects, iframes, scrap defenders like Cloudflare services, better rendering

of
javascript forms and scripts, even meta redirects. But, because of the time it takes for cold-start

of
webdrivers, our cost-study had clearly revealed that we cannot continue with them anymore.
We

did a similar cost comparison against Amazon’s EC2 infrastructure of having a dual

route
mechanism. Surprisingly, we found that the cost of temporary eC2 instance that simulates a

lambda is
comparatively lesser. The combination of transient-EC2 instances, chrome and raw

crawling with
selenium proved us to be the right architecture for the task to be accomplished.

A few more of the following enhancements made this infrastructure, a fast superultra scalable

architecture.

 Atomic Dependencies - The interlinked components are made as atomic as possible and

the
interactions between them were largely minimised. Databases were localized and each

atomic
node will just talk to the master database once as opposed to talking thousands of

times
through DDL/DML queries.

 Caching - Caching can be either standalone or distributed. But from atomicity

perspective,
standalone cache servers installed individually in our EC2 instances helped us

steadfasting the
process.

 Tracking and Error Handling - When we trigger such a huge process, it’s very vital to

keep
track of the progress and we should be able to spot any discrepancy and be able to

take
corrective action immediately. So we had installed other highly scalable error

monitoring
systems in place.

Conclusion

Number of AWS Nodes

For the same task, we were using some 180 t2.small nodes. For the new architecture to power
boost

the concurrency, we used 500 c4.large machines.

Nodes Count

Old Architecture New Architecture

3

Cost Reduced

Time Saved

Though the number and node-config were increased, due to the least usage, the charge was
drastically

reduced and we were able to save more than 98 percentage.

But more than the cost, the time it saved us is phenomenal! (167900%) and all the agony of waiting for

whole 5 weeks to get this done is totally gone away.

Time Taken

Old Architecture New Architecture

Francium Tech’s approach to this problem is what differentiates us with others. Our focus was more
on

achieving efficiency on all levels. As one could notice, we not only reduced the cost by multi-folds,
but

also the turn-around time taken to handle any foreseen inconsistencies the system threw. Earlier
it took

weeks, but, with this new architecture it was reduced to minutes. This directly correlates

the
stakeholder’s trust on the stability of the entire machine. In other words, the ball was hit out of

the
park.

4

Number of
Nodes
 Node Type Utilization Total Cost

180 t2.small 100% for 5 weeks $ 3031
Old

500 c4.large 100% for just 30 Minutes $ 50New

